Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 9(9)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947957

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin disease caused by mutation of the COL7A1 gene. RDEB is associated with high levels of TGF-ß1, which is likely to be involved in the fibrosis that develops in this disease. Endoglin (CD105) is a type III coreceptor for TGF-ß1 and its overexpression in fibroblasts deregulates physiological Smad/Alk1/Alk5 signalling, repressing the synthesis of TGF-ß1 and extracellular matrix (ECM) proteins. Raloxifene is a specific estrogen receptor modulator designated as an orphan drug for hereditary hemorrhagic telangiectasia, a rare vascular disease. Raloxifene stimulates endoglin synthesis, which could attenuate fibrosis. By contrast, the antioxidant N-acetylcysteine may have therapeutic value to rectify inflammation, fibrosis and endothelial dysfunction. Thus, we present here a repurposing strategy based on the molecular and functional screening of fibroblasts from RDEB patients with these drugs, leading us to propose the repositioning of these two well-known drugs currently in clinical use, raloxifene and N-acetylcysteine, to counteract fibrosis and inflammation in RDEB. Both compounds modulate the profibrotic events that may ultimately be responsible for the clinical manifestations in RDEB, suggesting that these findings may also be relevant for other diseases in which fibrosis is an important pathophysiological event.


Assuntos
Acetilcisteína/farmacologia , Reposicionamento de Medicamentos , Epidermólise Bolhosa/genética , Fibroblastos/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Fator de Crescimento Transformador beta1/genética , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Antioxidantes/farmacologia , Estudos de Casos e Controles , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Endoglina/genética , Endoglina/metabolismo , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/patologia , Antagonistas de Estrogênios/farmacologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Humanos , Padrões de Herança , Cultura Primária de Células , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
Sci Rep ; 9(1): 11916, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417117

RESUMO

Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer. Here, we propose to use the information accumulating regarding the biology of miRs from clinical research in the preclinical arena, adapting it to the use of miR biosensors in the earliest steps of drug screening. Thus, we have used an amperometric dual magnetosensor capable of monitoring a miR-21/miR-205 signature to screen for new drugs that restore these miRs to non-tumorigenic levels in cell models of breast cancer and glioblastoma. In this way we have been able to identify a new chemical entity, 11PS04 ((3aR,7aS)-2-(3-propoxyphenyl)-7,7a-dihydro-3aH-pyrano[3,4-d]oxazol-6(4H)-one), the therapeutic potential of which was suggested in mechanistic assays of disease models, including 3D cell culture (oncospheres) and xenografts. These assays highlighted the potential of this compound to attack cancer stem cells, reducing the growth of breast and glioblastoma tumors in vivo. These data demonstrate the enhanced chain of translatability of this strategy, opening up new perspectives for drug-discovery pipelines and highlighting the potential of miR-based electro-analytical sensors as efficient tools in modern drug discovery.


Assuntos
Técnicas Biossensoriais , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Oxazóis/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Fenômenos Magnéticos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Oxazóis/química , Reprodutibilidade dos Testes , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancers (Basel) ; 11(7)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295963

RESUMO

Controlled delivery of multiple chemotherapeutics can improve the effectiveness of treatments and reduce side effects and relapses. Here in, we used albumin-stabilized gold nanoclusters modified with doxorubicin and SN38 (AuNCs-DS) as combined therapy for cancer. The chemotherapeutics are conjugated to the nanostructures using linkers that release them when exposed to different internal stimuli (Glutathione and pH). This system has shown potent antitumor activity against breast and pancreatic cancer cells. Our studies indicate that the antineoplastic activity observed may be related to the reinforced DNA damage generated by the combination of the drugs. Moreover, this system presented antineoplastic activity against mammospheres, a culturing model for cancer stem cells, leading to an efficient reduction of the number of oncospheres and their size. In summary, the nanostructures reported here are promising carriers for combination therapy against cancer and particularly to cancer stem cells.

4.
J Nutr ; 148(9): 1408-1414, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184230

RESUMO

Background: The expression of certain genes involved in response to oxidative stress is likely related to aging-related outcomes, such as frailty in old age. Given nutrition's substantial impact in aging and age-related diseases, one of its mechanisms might be through influencing gene expression. Objective: This study aimed to investigate the association between nutrition and the expression of 15 genes related to cellular response to stress in older community-dwelling individuals. Methods: A nested case-control study of 350 participants (mean ± SEM age: 76.5 ± 6.9 y, 42.9% men, 22% frail according to Fried's criteria) was selected from the Toledo Study for Healthy Aging. Blood-derived RNA was retro-transcribed into complementary DNA. TaqMan Arrays were used for determining gene expression. The Mini Nutritional Assessment (MNA) and the PREDIMED (PREvención con DIeta MEDiterranea) questionnaire measured nutritional status and adherence to the Mediterranean diet (MD), respectively. Data were reweighed so that inference from linear and logistic regression models applied to the original sampling population. Results: Higher MNA scores were associated with higher expressions of the gene coding for sirtuin-1 (SIRT1), regardless of age, sex, and Charlson comorbidity score (P = 0.04) and even after adjusting for frailty status (P = 0.016) and level of adherence to the MD (P = 0.04). Malnutrition risk and SIRT1 gene expression were inversely associated (P = 0.0045) independently of frailty status (P = 0.0045) and level of adherence to the MD (P = 0.0075). Conclusions: In older individuals, improvement in nutritional status is positively associated with SIRT1 gene expression independently of frailty status or adherence to the MD. These findings may provide potential biomarkers and targets for health interventions among the elderly.


Assuntos
Expressão Gênica/fisiologia , Envelhecimento Saudável/fisiologia , Estado Nutricional/fisiologia , Sirtuína 1/genética , Sirtuína 1/fisiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Dieta Mediterrânea , Feminino , Idoso Fragilizado , Humanos , Estudos Longitudinais , Masculino , Desnutrição/epidemiologia , Desnutrição/genética , Avaliação Nutricional , Estado Nutricional/genética , Estresse Oxidativo/genética , RNA Mensageiro/análise , Espanha/epidemiologia , Inquéritos e Questionários
5.
J Am Med Dir Assoc ; 18(8): 734.e1-734.e7, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28647579

RESUMO

BACKGROUND: Specific mechanisms underlying frailty syndrome are not well known. Frailty can be viewed as a loss of functional reserve resulting in increased vulnerability to stressors. We hypothesize that pathways regulating cellular response to stress are potential players in the development of frailty. The aim of this study was to evaluate the association of the expression of certain genes related to cellular response to stress with the presence of frailty in older patients. METHODS: A sample of 350 individuals aged 65 years or older (22% frail) was selected from the Toledo Study of Healthy Aging. RNA was extracted from blood and retro-transcribed into complementary DNA. TaqMan Low density Arrays were used for the measurement of expression of genes implicated in cellular response to oxidative stress, genes implicated in inflammation, genes implicated in vascular physiology, and genes related to hypoxia. For data analysis, a logistic regression model was used to assess the relationship of gene expression and frailty. RESULTS: Among the analyzed genes, lower expression of genes related to cellular response to hypoxia (hypoxia inducible factor-1α) or to cellular response to oxidative stress (nuclear factor erythroid 2-related factor 2 and its target genes heme oxygenase-2, thioredoxin reductase-1, and superoxide dismutase-2), but not to those related to inflammation or vascular physiology, were significantly associated with the presence of frailty after adjustment for age and sex. These associations remained significant after adjustment by type 2 diabetes and Charlson index of comorbidities. Lower expressions of genes involved in cellular response to stress were also associated with increased risk of functional impairment. CONCLUSIONS: Reduced expression of several genes implicated in cellular response to oxidative stress or hypoxia is significantly associated with the presence of frailty. These results help to fill the gap of knowledge of this evolving field and provide targets for intervention to promote health and independence in the elderly.


Assuntos
Envelhecimento/genética , Fragilidade/genética , Expressão Gênica/genética , Envelhecimento Saudável , Estresse Oxidativo/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Avaliação Geriátrica/métodos , Humanos , Modelos Logísticos , Masculino
6.
Curr Med Chem ; 22(14): 1687-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25620104

RESUMO

UDP-glucose is an essential metabolite for a variety of processes in the cell physiology in all organisms. In prokaryotes, it is involved in the synthesis of trehalose, an osmoprotectant, in galactose utilization via the Leloir pathway and it plays a key role in the synthesis of the components of the bacterial envelope, particularly the lipopolysaccharide and the capsule, which represent necessary virulence factors of many bacterial pathogens. UDP-glucose is synthesized in bacteria by the prokaryotic UDP-glucose pyrophosphorylase (UGP, EC 2.7.7.9), an enzyme belonging to the family of sugar:nucleotidyl transferases. Despite the ubiquitous distribution of UGP activity in all domains of life, prokaryotic UGPs are evolutionarily unrelated to their eukaryotic counterparts. Taken together, these features make of bacterial UGP an attractive target candidate for the discovery and development of new generation antibiotics. This review summarizes the current knowledge on structure and function of bacterial UGPs, underlying their potential as drug target candidates.


Assuntos
Antibacterianos/farmacologia , UTP-Glucose-1-Fosfato Uridililtransferase , Animais , Antibacterianos/química , Humanos , Conformação Proteica , UTP-Glucose-1-Fosfato Uridililtransferase/antagonistas & inibidores , UTP-Glucose-1-Fosfato Uridililtransferase/química , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
7.
Stem Cells Dev ; 22(3): 501-11, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22873764

RESUMO

Mesenchymal stem cells (MSC) are effective in treating myocardial infarction (MI) and previous reports demonstrated that hypoxia improves MSC self-renewal and therapeutics. Considering that hypoxia-inducible factor-1 alpha (HIF-1α) is a master regulator of the adaptative response to hypoxia, we hypothesized that HIF-1α overexpression in MSC could mimic some of the mechanisms triggered by hypoxia and increase their therapeutic potential without hypoxia stimulation. Transduction of MSC with HIF-1α lentivirus vectors (MSC-HIF) resulted in increased cell adhesion and migration, and activation of target genes coding for paracrine factors. When MSC-HIF were intramyocardially injected in infarcted nude rats, significant improvement was found (after treatment of infarcted rats with MSC-HIF) in terms of cardiac function, angiogenesis, cardiomyocyte proliferation, and reduction of fibrotic tissue with no induction of cardiac hypertrophy. This finding provides evidences for a crucial role of HIF-1α on MSC biology and suggests the stabilization of HIF-1α as a novel strategy for cellular therapies.


Assuntos
Coração/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Infarto do Miocárdio/terapia , Animais , Células da Medula Óssea/fisiologia , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Vasos Coronários/fisiopatologia , Humanos , Masculino , Infarto do Miocárdio/patologia , Neovascularização Fisiológica , Ratos , Ratos Nus , Regeneração , Transdução de Sinais , Transcriptoma , Regulação para Cima , Cicatrização
8.
Vitam Horm ; 87: 367-79, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22127251

RESUMO

The biology of the α subunits of the hypoxia-inducible factors (HIFα) has expanded in the past years from their original role in angiogenesis to their nowadays position in the self-renewal and differentiation of stem cells. Hypoxia is a physiological condition in different tissues-including tumors-and, may cause stem cells in the onset of genomic instability, this last associated in the scientific literature with the acquisition of a malignant phenotypes. HIFα proteins have been the subjects of excellent scientific contributions in the past years, providing new paradigms in the biology of these key proteins and their pivotal role in cell homeostasis. Over other therapeutic implications, the relevance of studies focused on the etiology of tumor-initiating cells and the characterization of the mechanisms that could lead to their malignancy, is gaining significance in the health areas of cancer and regenerative medicine.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Terapia de Alvo Molecular , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
9.
Cell Cycle ; 9(14): 2803-13, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20676050

RESUMO

The network consisting of mTOR and p53 pathways is crucial to understanding a wide variety of physiological and pathological events, including cancer and aging. In addition, the HIF1alpha protein, a downstream target of mTOR, is a hallmark of different tumor types and was the desired strategy of many drug discovery efforts. Here we present the novel chemical entity FM19G11, a new modulator of HIF1alpha expression, which was used as a molecular tool to dissect and further characterize the cross-talk between these signaling cascades in human colon carcinoma cell lines. To our knowledge, FM19G11 is the first drug that triggers a DNA damage response (DDR) associated with G(1)/S-phase arrest in a p53-dependent manner, due to rapid hyper-activation of the growth signaling pathway through mTOR. Assessment of colonies demonstrated that FM19G11 decreases the clonogenicity of HT29, HCT116/p53(+/+) and HCT116/p53(-/-) cells. Moreover, FM19G11 causes significant lower colony growth in soft agar of p53-proficient human colon cancer cells. Consequently, p53 sensitizes human colon cancer cells to FM19G11 by significant reduction of their viability, lessening their colony formation capability and shrinking their anchorage-independent growth. Cell signaling studies served to assign a new mode of action to FM19G11, whose tumor-suppressant activity compromises the survival of functional p53 malignant cells.


Assuntos
Benzamidas/farmacologia , Benzoatos/farmacologia , Dano ao DNA , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Benzamidas/química , Benzoatos/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/agonistas , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Cinética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Proteínas Supressoras de Tumor/metabolismo
10.
Stem Cells ; 27(3): 733-43, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19259940

RESUMO

Spinal cord injury (SCI) is a major cause of paralysis. Currently, there are no effective therapies to reverse this disabling condition. The presence of ependymal stem/progenitor cells (epSPCs) in the adult spinal cord suggests that endogenous stem cell-associated mechanisms might be exploited to repair spinal cord lesions. epSPC cells that proliferate after SCI are recruited by the injured zone, and can be modulated by innate and adaptive immune responses. Here we demonstrate that when epSPCs are cultured from rats with a SCI (ependymal stem/progenitor cells injury [epSPCi]), these cells proliferate 10 times faster in vitro than epSPC derived from control animals and display enhanced self renewal. Genetic profile analysis revealed an important influence of inflammation on signaling pathways in epSPCi after injury, including the upregulation of Jak/Stat and mitogen activated protein kinase pathways. Although neurospheres derived from either epSPCs or epSPCi differentiated efficiently to oligodendrocites and functional spinal motoneurons, a better yield of differentiated cells was consistently obtained from epSPCi cultures. Acute transplantation of undifferentiated epSPCi or the resulting oligodendrocyte precursor cells into a rat model of severe spinal cord contusion produced a significant recovery of motor activity 1 week after injury. These transplanted cells migrated long distances from the rostral and caudal regions of the transplant to the neurofilament-labeled axons in and around the lesion zone. Our findings demonstrate that modulation of endogenous epSPCs represents a viable cell-based strategy for restoring neuronal dysfunction in patients with spinal cord damage.


Assuntos
Epêndima/citologia , Traumatismos da Medula Espinal/terapia , Medula Espinal/citologia , Medula Espinal/patologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Apoptose , Western Blotting , Diferenciação Celular/fisiologia , Proliferação de Células , Sobrevivência Celular , Eletrofisiologia , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Oligodendroglia/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Células-Tronco/fisiologia
11.
Stem Cells ; 26(8): 2052-62, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18511603

RESUMO

The DNA mismatch repair (MMR) system maintains genomic integrity by correcting replication errors: its malfunction causes genomic instability in several tumor types. Hypoxia-inducible factor-1alpha (HIF1alpha), the major regulator of the processes that occur in hypoxia and certain epigenetic events downregulate the expression of MMR genes in cancer cells. However, there is a lack of information regarding MMR regulation and the genetic stability of stem cells under hypoxic conditions. The expression of the MMR system is downregulated in murine and human stem cells cultured in hypoxia, which correlates with lower DNA repair activity in neural stem cells. We observed, through the use of short hairpin loop RNAi expression constructs, that HIF1alpha positively regulated MLH1 and MSH6 when the C17.2 neural stem cells were exposed to short-term hypoxia. However, in prolonged exposure to oxygen depletion, the reduced transcriptional activation of MMR genes was directed by specific epigenetic events. Chromatin immunoprecipitation experiments showed a hypoacetylated/hypermethylated histone H3 and lower SP1 binding within MLH1 and MSH6 adjacent promoter regions. Treatment with the histone deacetylase inhibitor trichostatin A increased histone H3 acetylation and SP1 occupancy and enhanced MMR expression. Sequencing of microsatellite markers revealed genomic instability in the murine and human stem cells grown under hypoxia. Thus, the present article reports, for the first time in the stem cell field, experimental data that indicate that hypoxic niches are an environment in which stem cells might undergo genomic instability, which could lie at the origin of subpopulations with cancer stem cell properties. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Reparo de Erro de Pareamento de DNA , Regulação para Baixo , Instabilidade Genômica , Hipóxia , Células-Tronco/citologia , Animais , Células Cultivadas , Reparo do DNA , Epigênese Genética , Genoma , Histonas/metabolismo , Humanos , Mesoderma/citologia , Camundongos , Interferência de RNA
12.
J Nat Prod ; 67(7): 1190-2, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15270580

RESUMO

Two new cembrane-type diterpenoids have been isolated from the 2-propanol extract of the sea pen Gyrophyllum sibogae collected in South Africa: 7,8-dihydroflabellatene A (1) and 7,8-dihydroflabellatene B (2). Their structures were determined on the basis of detailed spectroscopic analysis and by single-crystal X-ray analysis of the major metabolite 1, which showed strong in vitro cytotoxicity against a panel of 13 tumor cell lines.


Assuntos
Antozoários/química , Antineoplásicos/isolamento & purificação , Diterpenos/isolamento & purificação , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Cristalografia por Raios X , Diterpenos/química , Diterpenos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Madagáscar , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Células Tumorais Cultivadas
13.
J Biol Chem ; 278(1): 241-50, 2003 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-12414812

RESUMO

We report that Aplidin, a novel antitumor agent of marine origin presently undergoing Phase II clinical trials, induced growth arrest and apoptosis in human MDA-MB-231 breast cancer cells at nanomolar concentrations. Aplidin induced a specific cellular stress response program, including sustained activation of the epidermal growth factor receptor (EGFR), the non-receptor protein-tyrosine kinase Src, and the serine/threonine kinases JNK and p38 MAPK. Aplidin-induced apoptosis was only partially blocked by the general caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone and was also sensitive to AG1478 (an EGFR inhibitor), PP2 (an Src inhibitor), and SB203580 (an inhibitor of JNK and p38 MAPK) in MDA-MB-231 cells. Supporting a role for EGFR in Aplidin action, EGFR-deficient mouse embryo fibroblasts underwent apoptosis upon treatment more slowly than wild-type EGFR fibroblasts and also showed delayed JNK and reduced p38 MAPK activation. N-Acetylcysteine and ebselen (but not other antioxidants such as diphenyleneiodonium, Tiron, catalase, ascorbic acid, and vitamin E) reduced EGFR activation by Aplidin. N-Acetylcysteine and PP2 also partially inhibited JNK and p38 MAPK activation. The intracellular level of GSH affected Aplidin action; pretreatment of cells with GSH or N-acetylcysteine inhibited, whereas GSH depletion caused, hyperinduction of EGFR, Src, JNK, and p38 MAPK. Remarkably, Aplidin also induced apoptosis and activated EGFR, JNK, and p38 MAPK in two cell lines (A-498 and ACHN) derived from human renal cancer, a neoplasia that is highly refractory to chemotherapy. These data provide a molecular basis for the anticancer activity of Aplidin.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Depsipeptídeos , Receptores ErbB/metabolismo , Glutationa/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos Cíclicos/farmacologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Neoplasias da Mama/metabolismo , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Neoplasias Renais/metabolismo , Camundongos , Fosforilação , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Células Tumorais Cultivadas/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno
14.
Oncogene ; 21(49): 7533-44, 2002 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-12386816

RESUMO

Aplidin, a new antitumoural drug presently in phase II clinical trials, has shown both in vitro and in vivo activity against human cancer cells. Aplidin effectively inhibits cell viability by triggering a canonical apoptotic program resulting in alterations in cell morphology, caspase activation, and chromatin fragmentation. Pro-apoptotic concentrations of Aplidin induce early oxidative stress, which results in a rapid and persistent activation of both JNK and p38 MAPK and a biphasic activation of ERK. Inhibition of JNK and p38 MAPK blocks the apoptotic program induced by Aplidin demonstrating its central role in the integration of the cellular stress induced by the drug. JNK and p38 MAPK activation results in downstream cytochrome c release and activation of caspases -9 and -3 and PARP cleavage, demonstrating the mediation of the mitochondrial apoptotic pathway in this process. We also demonstrate that protein kinase C delta (PKC-delta) mediates the cytotoxic effect of Aplidin and that it is concomitantly processed and activated late in the apoptotic process by a caspase mediated mechanism. Remarkably, cells deficient in PKC-delta show enhanced survival upon drug treatment as compared to its wild type counterpart. PKC-delta thus appears as an important component necessary for full caspase cascade activation and execution of apoptosis, which most probably initiates a positive feedback loop further amplifying the apoptotic process.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Depsipeptídeos , Isoenzimas/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Peptídeos Cíclicos/farmacologia , Proteína Quinase C/metabolismo , Western Blotting , Ativação Enzimática , Citometria de Fluxo , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Proteína Quinase C-delta , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...